

Emily Roarty

Advisor: Dr. David Riley

Foundry at 41st

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Introduction:

Architecture

Cost and Schedule Logistics

Architecture

Building Facts

Project	The Foundry at 41st
Location	Lawrenceville, PA
Owner	Ft. Willow Developers
Type of Project	Residential
Gross Square	164,997 square feet.
Feet	
Stories/ Units	6 stories/ 184 units
Project Team	
Owner	Ft. Willow Developers
Construction	PJ Dick
Manager	
Architect	Rothschild Doyno
MEP	Allan & Shariff
Structural	Atlantic Engineering
	Services
Schedule	November 2015-May
	2017
Budget	\$35 million
Delivery Method	Design Bid Build

Foundry at 41st

Introduction

Depth 1: Kitchen Plumbing Manifold
Problem and Goals
Background Information
Execution
Recommendations

Depth 2: Hollow-Core Concrete Plank
Problem and Goals
Background Information
Execution
Structural Breadth
Recommendations

Depth 3: LEED Goals and Green Roof
Problem and Goals
Background Information
Execution
Mechanical Breadth
Recommendations

Depth 4: Minimal Living Research
Problem and Goals
Background Information
Execution
Recommendations

Introduction:

Architecture

Cost and Schedule Logistics

Lawrenceville is one of top Hippest neighborhoods in the world.

25% increase in young professionals in Lawrenceville in last 5 years.

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Introduction:

Architecture

Cost and Schedule

Logistics

Cost

Total Budget	\$35 million
Total Cost	\$25 million
Cost/ Square Feet	\$151.52

Schedule

otal Schedule (years)	2 years
otal Schedule (months)	24 months
ates	November 2015 to May 2017

Introduction

Depth 1: Kitchen Plumbing Manifold
Problem and Goals
Background Information
Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank
Problem and Goals
Background Information
Execution
Structural Breadth
Recommendations

Depth 3: LEED Goals and Green Roof
Problem and Goals
Background Information
Execution
Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research
Problem and Goals
Background Information
Execution

Recommendations

Conclusion

Introduction:

Architecture
Cost and Schedule
Logistics

Logistics

Characteristics:

- -Tight, Urban Site
- -Laydown Area in Courtyard

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 1: Kitchen Plumbing Manifold

- Problem and Goals
- Background Information
- Execution
- Mechanical Breadth
- Recommendations

Depth 1: Kitchen Plumbing Manifold

Problem:

 Redundancy in plumbing back to back Kitchen and Bathroom Units

Goals:

- Save on waste plumbing
- Save on Schedule
- Reduce Costs

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Depth 1: Kitchen Plumbing Manifold

- ✓ Problem and Goals
- Background Information
- Execution
- Mechanical BreadthRecommendations

Depth 1: Background Information

	Unit	Count
hen	3 to 3	43
	3 to 3	28
	3 to 1	10
1	3 to 2	Z
hen	1 to 1	5
hen	6 to 2	4
hen	2 to 2	3
hen	3 to 1	3
hen	3 to 2	0

Identified:

- 43 instances of Unit 3 to Unit 3
 Kitchens
- 28 instances of Unit 3 to Unit 3
 Bathrooms
- 10 instances of Unit 3 to Unit 1
 Bathrooms

Focused on the 43 shared wall instances of Unit 3 to Unit 3 in Wall Kitchens

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Depth 1: Kitchen Plumbing Manifold

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Mechanical Breadth
- Recommendations

Depth 1: Execution

Cost Estimate:

- \$33,589.70 Total Cost of 43
 Prefabricated Manifolds
- \$781 per Prefabricated Manifold
- Cost Savings= \$6,000
- 1598 linear feet of piping material
- 37 linear feet of piping per Prefabricated Manifold

Schedule:

- Current System: 18 days on Critical Path
- Alternative System: 10 days on Critical Path

Conclusion

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 1: Kitchen Plumbing Manifold

- ✓ Problem and Goals
- ✓ Background Information
- ✓ Execution
- ✓ Mechanical Breadth
- Recommendations

Depth 1: Kitchen Plumbing Manifold

Review of Goals:

- ✓ Save on waste plumbing
- ✓ Save 8 days on Schedule
 - Reduce Costs

Recommendation:

- Yes, I wouldRecommend on basis:
- ✓ Schedule Savings
- ✓ Broke even including transportation costs

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

- Problem and Goals
- Background Information
- Execution
- Structural Breadth
- Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem:

Existing System:

- Schedule Intensive Second Floor Cast in Place Concrete Floor

	LEVEL 2 (SLAB/DECK) SCHEDULE						
RK	TYPE	REINFORCING	TOTAL THICKNESS				
	5 1/4" N.WT. CONC. SLAB ON 2"-20 GA. COMP. STEEL DECK REINF. W/ 6X6-W4.0XW4.0 W.W.F. 7 1/4"						

Goals:

- Reduce the Schedule of Second Floor Construction
- Reduce Labor Costs
- Meet or Exceed Material Property Requirements

Foundry at 41st

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 2: Background Information

	Hollow-core	Double Tee	Post-Tensions Cast in place
Span to Depth Ratio	Excellent	Good	Excellent
Construction Speed	Excellent	Excellent	Poor
STC Ratings	Excellent	Good	Excellent
Shoring Required	No	No	Yes (Significant)
Immediate Safe Working Platform	Yes	Yes	No
Span Lengths	Up to 30 ft	Up to 62 ft	Up to 30 ft
Typical Use	Podium Slabs	Parking Garages	Podium Slabs
	Residential Floors Hospitality	Office Buildings Warehouse	Residential Floors Parking Garages Office Buildings
Fire Rating	2 Hour	2 Hour	2 Hour
Contractor Benefits	Reduced Risk Speed of Construction Design Assistance	Reduced Risk Speed of Construction Design Assistance	Self Performance

Hollow Core Concrete Plank:

- Spans up to 35 ft
- Precast
- 2 Hour Fire Rating

Foundry at 41st

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals
Background Information
Execution

Execution

Structural Breadth Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 2: Hollow-Core Concrete Plank

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Structural Breadth
- Recommendations

Depth 2: Execution

Cost Estimate:

Current System:

- Composite deck per sq ft= \$9.59
- Total cost of the Composite
 Metal deck = \$244, 104

Alternative System:

- Hollow-Core Plank per sq ft=\$7.31
- Total cost of the Hollow-Core Plank=\$186,068

Total Savings= \$27,120

Schedule:

Current System:

Total Days= 28 days on site

Alternative System:

- Hollow-Core Plank per day= 4,500 sq feet
- Total Days= 7 days on site

Total Savings=
10 days

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 2: Hollow-Core Concrete Plank

- ✓ Problem and Goals
- ✓ Background Information
- ✓ Execution
- Structural Breadth
- Recommendations

Breadth 2: Structural Connections

Summary of Allowable Stresses

Top Stress=-877-416+935= -368 lb/in²

Bottom Stress=+1354-416-935= 3 lb/in²

Prestressed Concrete 16"x4'-0" NiCore Plank

2 Hour Fire Resistance Rating With 2" Topping

PHYSICAL PROPERTIES Composite Section

 $A_c = 418 \text{ in.}^2$ Precast $b_w = 14.25 \text{ in.}$ $I_c = 15498 \text{ in.}^4$ Precast $S_{bcp} = 1653 \text{ in.}^3$

 $Y_{bcp} = 9.38 \text{ in.}$ Top

1. Topping $S_{tct} = 2542 \text{ in}^3$. 1. Precast $S_{tcp} = 2340 \text{ in}^3$.

 Y_{tcp} = 6.62 in. Y_{tct} = 8.82 in.

Precast Wt. = 367 PLF

Precast Wt.= 91.75 PSF

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 2: Hollow-Core Concrete Plank

- ✓ Problem and Goals
- ✓ Background Information
- ✓ Execution
- ✓ Structural Breadth
- Recommendations

Depth 2: Hollow-Core Concrete Plank

Goals:

- ✓ Reduce the Schedule of Second Floor Construction
 - Reduce Labor Costs
- ✓ Meet or Exceed Material Property Requirements

Recommendation:

- Yes, I would recommend on basis of:
- ✓ Reduced Schedule of 10 days
- Exceeds the material property

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth
Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals
Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 3: LEED Implementation and Goals

- Problem and Goals
- Background Information
- Execution
- Mechanical Breadth
- Recommendations

Depth 3: LEED Implementation and Goals

Problem:

- Existing building can be LEED certified with Building Size Adjustment
- How can financially justify LEED accreditation

Goals:

- Perform the SizeAdjustment
- Financially Justify LEED accreditation
- Objectives to reach Silver or Gold

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals
Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 3: LEED Implementation and Goals

- ✓ Problem and Goals
- Background Information
- Execution
- Mechanical Breadth
- Recommendations

Depth 3: Background Information

• With the size adjustment, the Foundry is LEED Certified.

Prerequis Credit

If the Energy and Atmosphere points were pursued it could reach Silver or Goal Status.

site/	Verification Submittals Provided by Project Team		Verification Team	Submittal to GBCI at Certification	
		AND	Verify building area for each building.		
			Verify home size adjustment calculation (including		
	Provide architectural plans and basis for calculating	AND	ensuring that only appropriate rooms are counted as		
	size of each home or unit.		bedrooms).		
ual Energy	Size of each floring of arma		OR	None	BUILDIN
		OR	Perform home size adjustment calculation for each building.	None	CH
	LEED Energy Budget report.	AND	Verify energy model output demonstrating energy		
	OR		savings from energy model.		
	Calculations demonstrating annual energy use.	AND	Suvings from energy model.		
				W.S. G	LEED CERTIFIED USGBC

Size Adjustment:

Lowered Standard by 5 pts:

- o Certified, 35
- o Silver, 45
- o Gold, 55
- Platinum 75 points

Threshold Adjustment (point range: -10 to +10)

		W	J		
Maximum home size (ft²) by number of bedrooms			Adjustment to		
≤ 1	2	3	4	5	award thresholds*
edroom	Bedrooms	Bedrooms	Bedrooms	Bedrooms	
610	950	1290	1770	1940	-10
640	990	1340	1840	2010	-9
660	1030	1400	1910	2090	-8
680	1070	1450	1990	2180	-7
710	1110	1500	2060	2260	-6
740	1160	1570	2140	2350	-5
770	1200	1630	2230	2440	-4
800	1250	1690	2320	2540	-3
830	1300	1760	2400	2640	-2
860	1350	1830	2500	2740	-1
900	1400	1900	2600	2850	0 ("neutral")
940	1450	1970	2700	2960	+1
970	1510	2050	2810	3080	+2
1010	1570	2130	2920	3200	+3
1050	1630	2220	3030	3320	+4
1090	1700	2300	3150	3460	+5
1130	1760	2390	3280	3590	+6
1180	1830	2490	3400	3730	+7
1220	1910	2590	3540	3880	+8
1270	1980	2690	3680	4030	+-9
1320	2060	2790	3820	4190	+10
For lar	ger homes, or h	omes with more	bedrooms, see	below.	

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 3: LEED Implementation and Goals

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Mechanical Breadth
- Recommendations

Depth 3: Execution

Summary of Green Roof Cost and Schedule

em	Estimate
tal Square Feet of Terrace	3,325 sq ft
tal Cost per square feet	\$20/ sq ft
tal Investment	\$66,500
yback Period	4 years

Semi-Intensive Green Roof Design

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 3: LEED Implementation and Goals

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Mechanical Breadth
- Recommendations

Depth 3: Execution

According to Research:

- Willing to pay \$100 more for Green Apartment.
- The Average Green Apartment can cost up to \$560 more per month.

Increase rent by 1%, \$100 more a month

- Pay back Green Roof investment in 2-3 months
- Make a profit of \$18,400 a month after that

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 3: LEED Goals and Green Roof

- ✓ Problem and Goals
- ✓ Background Information
- ✓ Execution
- Mechanical Breadth
- Recommendations

Breadth 2: Mechanical Breadth

All Air System (Current)

Air-Water System (Proposed)

Item	Estimate
All Air (current system)	\$25/ square ft.
Air-Water System (alternative system)	\$34/ square ft. (includes piping)
All Air Percentage of Budget	15%
Air-Water System Percentage of Budget	20%
All Air Total Cost	\$5,250,000
Air-Water Total Cost	\$6,870,000

Do Not Recommend:

- -Expensive First Cost of Air-Water System
- -Payback Period is too long
- -Requires more to be maintained

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information
Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 3: LEED Implementation and Goals

- ✓ Problem and Goals
- ✓ Background Information
- ✓ Execution
- ✓ Mechanical Breadth
- Recommendations

Depth 3: LEED Implementation and Goals

Goals:

- ✓ Perform the Size Adjustment
- ✓ Financially Justify LEED accreditation
- ✓ Objectives to reach Silver or Gold

Recommendation:

- Yes, I would Recommend on the basis of:
- ✓ LEED Certified building
- ✓ Work toward Energy and Atmosphere points

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 4: Minimal Living Research

- Problem and Goals
- Background Information
- Execution
- Recommendations

Depth 4: Minimal Living Research

Problem:

Increased Consumption is damaging our environment.

Goals:

- Sustainable Living
- Simpler lifestyle
- Economic justification

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Depth 4: Minimal Living Research

- Problem and Goals
- Background Information
- Execution
- Recommendations

Depth 4: Minimal Living Research

Currently there is \$2.2 Billion Dollar Storage Industry.

According to the Self Storage Association

"physically possible that every

American could stand — all at the same time — under the total canopy of self-storage roofing."

Conclusion

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 4: Minimal Living Research

- ✓ Problem and Goals
- Background Information
- Execution
- Recommendations

Depth 4: Background Information

3X as much space per person now than in the 1950's

A Family of 4 Uses 40% of Space

The Solution. Microhouse.

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 4: Minimal Living Research

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Recommendations

Depth 4: Execution

Redesign of 6th Floor

Average Sq. Ft. Reduction of 450 sq. ft. or 40%

Redesign 6th Floor Plan

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Depth 4: Minimal Living Research

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Recommendations

Depth 4: Execution

675 sq ft- 2 bed

530 sq ft- Micro

Unit Type	Quantity	Area per unit	Total Area
2 bed	10	675	6750
Micro	12	532	6384
			13134
Unit Type	Quantity	Cost per unit	Monthly Income
Unit Type 2 bed	Quantity 10	Cost per unit 1500	
		1500	15000

Broke even on cost:

- before 28,000 monthly income. Additional 10,000 sq. ft. roof terrace

-tenants can have green roof and

terrace

Foundry at 41st

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals
Background Information
Execution

Recommendations

Conclusion

Depth 4: Minimal Living Research

- ✓ Problem and Goals
- ✓ Background Information
- Execution
- Recommendations

Depth 4: Execution

Breakdown

New Layout
12, Micros
10, 2 Beds
=24 rooms,
32 people

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Depth 4: Minimal Living Research

- ✓ Problem and Goals
- ✓ Background Information
- ✓ Execution
- Recommendations

Depth 4: Minimal Living Research

Recommendation: Yes, I would recommend.

Advantages	Disadvantages
Reduction of Utilities	Harder to market specific group of tenants?*
Breakeven on selling units	
Promotes a sustainable residential community	
Research shows people willing to pay more for sustainable spaces	*Lawrenceville, PA has seen an increase in 25% of young professionals to area.

Marketing to young adults: 25% increase in young professionals in Lawrenceville in last 5 years.

```
Foundry at 41<sup>st</sup>
ntroduction
Depth 1: Kitchen Plumbing Manifold
        Problem and Goals
        Background Information
        Execution
         Recommendations
Depth 2: Hollow-Core Concrete Plank
        Problem and Goals
        Background Information
         Execution
        Structural Breadth
         Recommendations
Depth 3: LEED Goals and Green Roof
        Problem and Goals
        Background Information
         Execution
         Mechanical Breadth
         Recommendations
Depth 4: Minimal Living Research
         Problem and Goals
        Background Information
        Execution
        Recommendations
```

Conclusion

Depth 1: Kitchen Plumbing Manifold

- ✓ Save on waste plumbing
- ✓ Save 8 days on Schedule
- X Reduce Costs

Depth 3: LEED Goals and Green Roof **Breadth 2: Mechanical**

- ✓ Perform the Size Adjustment
- ✓ Financially Justify LEED accreditation
- ✓ Objectives to reach Silver or Gold

Depth 2: Hollow-Core Concrete Plank Breadth 1: Structural

- ✓ Reduce the Schedule of Second Floor Construction
- X Reduce Labor Costs
- ✓ Meet or Exceed Material Property Requirements

Depth 4: Minimal Living Research

- ✓ Reduction of the overall floorplan
- ✓ Create a design for a sustainable living floor

Introduction

Depth 1: Kitchen Plumbing Manifold

Problem and Goals

Background Information

Execution

Recommendations

Depth 2: Hollow-Core Concrete Plank

Problem and Goals

Background Information

Execution

Structural Breadth

Recommendations

Depth 3: LEED Goals and Green Roof

Problem and Goals

Background Information

Execution

Mechanical Breadth

Recommendations

Depth 4: Minimal Living Research

Problem and Goals

Background Information

Execution

Recommendations

Conclusion

Thank You!

PJ Dick	Project	Supports	Academic
Bryan Passarella	Walnut Capital	Mom and Dad	Dr. David Riley
Jude Champion	Rothschild Doyno	Diana Malcom	Dr. Robert Leicht
Bruce	AES	Ronda Stern	Dr. Moses Ling
Eric Pascucci	Allen & Shariff	Matt Grimes	Dr. John Messner

Appendix.

1. Plumbing Manifold

Item	Estimate
श्रेपप्रसाम्बाक्षकाई E	Still \$35,589.7
Manifolds Cost	
Single Plumbing	\$781
Manifold Cost	
Total Number of	1,598
Linear Feet for 43	
Manifolds	

Dimensions: 18.7 ft approximately 20 ft long				
3.5 ft wide				
Dimension of Truck: 48 ft long				
8.5 ft wide				
Approximately 11 truckloads of 4 manifold each to the site				
\$1.7/ mile * 7 miles*2 trips*11 truckloads= \$275 rental				
\$67/ hour*8 hour days* 10= \$5360				
Total Cost of Transportation= \$5635				

2. Hollow Core Plank

LEVEL 2 (SLAB/DECK) SCHEDULE				
IARK	TYPE	REINFORCING	TOTAL THICKNESS	
S3	5 1/4" N.WT. CONC. SLAB ON 2"-20 GA. COMP. STEEL DECK	REINF. W/ 6X6-W4.0XW4.0 W.W.F.	7 1/4"	

	Hollow-core	Double Tee	Post-Tensions Cast in place
Span to Depth Ratio	Excellent	Good	Excellent
Construction Speed	Excellent	Excellent	Poor
STC Ratings	Excellent	Good	Excellent
Shoring Required	No	No	Yes (Significant)
Immediate Safe Working Platform	Yes	Yes	No
Span Lengths	Up to 30 ft	Up to 62 ft	Up to 30 ft
Typical Use	Podium Slabs	Parking Garages	Podium Slabs
	Residential Floors Hospitality	Office Buildings Warehouse	Residential Floors Parking Garages Office Buildings
Fire Rating	2 Hour	2 Hour	2 Hour
Contractor Benefits	Reduced Risk	Reduced Risk	Self Performance
	Speed of Construction	Speed of Construction Design Assistance	

Prestressed Concrete 12"x4'-0" NiCore Plank

2 Hour Fire Resistance Rating With 2" Topping

PHYSICAL PROPERTIES Composite Section

```
A_c = 361 in.<sup>2</sup> Precast b_w = 14.25 in.

I_c = 7840 in.<sup>4</sup> Precast S_{bcp} = 1081 in<sup>3</sup>.

Y_{bcp} = 7.26 in. Topping S_{tct} = 1644 in<sup>3</sup>.

Y_{tcp} = 4.74 in. Precast S_{tcp} = 1653 in<sup>3</sup>.

Y_{tct} = 6.74 in. Precast S_{tcp} = 17.00 PSF
```


Appendix.

3. LEED Certification

			old Adjustme ange: -10 to +1		
Maximum home size (ft²) by number of bedrooms					Adjustment to
≤ 1	2	3	4	5	award thresholds*
Bedroom	Bedrooms	Bedrooms	Bedrooms	Bedrooms	
610	950	1290	1770	1940	-10
640	990	1340	1840	2010	-9
660	1030	1400	1910	2090	-8
680	1070	1450	1990	2180	-7
710	1110	1500	2060	2260	-6
740	1160	1570	2140	2350	-5
770	1200	1630	2230	2440	-4
800	1250	1690	2320	2540	-3
830	1300	1760	2400	2640	-2
860	1350	1830	2500	2740	-1
900	1400	1900	2600	2850	0 ("neutral")
940	1450	1970	2700	2960	+1
970	1510	2050	2810	3080	+2
1010	1570	2130	2920	3200	+3
1050	1630	2220	3030	3320	+4
1090	1700	2300	3150	3460	+5
1130	1760	2390	3280	3590	+6
1180	1830	2490	3400	3730	+7
1220	1910	2590	3540	3880	+8
1270	1980	2690	3680	4030	+-9
1320	2060	2790	3820	4190	+10
For lar	ger homes, or h	omes with more	bedrooms, see	below.	

n	Estimate
Air (current system)	\$25/ square ft.
-Water System (alternative system)	\$34/ square ft. (includes piping)
Air Percentage of Budget	15%
-Water System Percentage of Budget	20%
Air Total Cost	\$5,250,000
-Water Total Cost	\$6,870,000

Air-Water System (Proposed)

4. Minimal Living Research

nit Type	Quantity	Area per unit	Total Area
bed	10	675	6750
icro	12	532	6384
			13134
nit Type	Quantity	Cost per unit	Monthly Income
bed	10	1500	15000
licro	12	1000	15000

Advantages	Disadvantages
Reduction of Utilities	Harder to market specific group of tenants?*
Breakeven on selling units	
Promotes a sustainable residential community	
Research shows people willing to pay more for sustainable spaces	*Lawrenceville, PA has seen an increase in 25% of young professionals to area.